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This paper presents a new fully implicit procedure for the solution of the steady incom- 
pressible Navier-Stokes equations in primitive variables. The momentum equations are 
coupled with a Poisson-type equation for the pressure and solved using the Beam and 
Warming approximate factorization method. The present formulation does not require the 
iterative solution of the pressure equation at each time step. Thus, the major drawback of the 
pressure-Poisson approach, which made it prohibitively expensive for complex three-dimen- 
sional applications, is eliminated. Numerical solutions for the problem of the two-dimensional 
driven cavity are obtained using a non-staggered grid at Re = 100, 400, and 1000. All the 
computed results are obtained without any artificial dissipation. This feature of the present 
procedure demonstrates its excellent convergence and stability characteristics. Those charac- 
teristics result from the coupling of the pressure equation, which is elliptic in space, with the 
momentum equations. 0 1990 Academic Press, Inc. 

Implicit approximate factorization techniques have been developed and success- 
fully applied [l, 21 for time marching solutions of the compressible Navier-Stokes 
equations. These techniques have desirable stability characteristics and are numeri- 
cally robust. The absence of the time derivative of the pressure from the incom- 
pressible continuity equation, however, prohibits the use of these techniques for the 
incompressible case. 

Chorin [3] modified the incompressible continuity equation by adding a time 
derivative term for the pressure. Thus the flow becomes artificially compressible, 
since pressure waves of finite speed are introduced in the incompressible flow field 
as a medium to distribute the pressure. The resulting system of the governing equa- 
tions is solved by using approximate factorization techniques developed for com- 
pressible flows. The method was applied by Steger and Kutler [4], Kwak et al. 
[S], and Choi and Merkle [6]. 

Harlow and Welch [7] proposed another approach to solve the incompressible 
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avier-Stokes equations. In this approach the continuity equation is replace 
isson equation for the pressure. The system of the governing equations c 

then, of the unsteady momentum equations, which are parabolic in time, and the 
pressure Poisson equation, which is elliptic in space. This difference in the nature 
of the governing equations requires the explicit treatment of the pressure and its 
derivatives in the momentum equations. As proposed 
method was restricted to staggered grids. Recently, th 
that the pressure equation could be solved on non-staggered grids [8]. Non- 

grids have advantages over staggered grids, in complex geometries, in 
non-orthogonal curvilinear coordinates and when using complex numerical techni- 
ques such as the multi-grid method. Explicit and semi-implicit pressure Poisson 
solvers have been developed for the solution of the incompressible ~av~er-~~~~es 
equations on non-staggered grids. In Ref. [9], th momentum equations are solved 
by an explicit time marching method, while in plicit approach is 
employed. In both techniques, the pressure in the momentum equations is 
evaluated explicitly. Therefore, the pressure Poisson equation is solved iteratively at 
each time step before advancing the solution to the next time level. The iterative 
solution of the pressure equation at each time step increases considera 
computation time and makes the pressure Poisson solvers ~r~~ibitive~y ex 
for complex three dimensional applications [ 5 ]. 

In the present study, the pressure Poisson equation approach is used to develop 
a new fully implicit method for the solution of the steady incompressible equations 
on non-staggered grids. An alternative approach for solving the elliptic pressure 

me marching procedures is considere . A time derivative of t 
d to the pressure equation transforming it into a parabolic equation 
nsient solutions of which have no physical meaning. The time 

dependent momentum equations and the modilie pressure equation are cau 
and solved by the Beam and Warming approximate factorization technique 
two-dimensio~aI driven cavity. In this formulation, the pressure terms in the 
momentum equations are evaluated implicitly and linearize in time in exactly the 
same way as the velocity terms. In other words, the velocity and pressure fields are 
simultaneously advanced to the next time level and consequently, no iterative solu- 
tion of the pressure equation is necessary at each time step. The consistent finite- 
difference scheme for the pressure equation proposed by Abd h ES] is used to 
numerically satisfy the compatibility between the right~ba~d sf the equation 
and the Neumann boundary conditions. 

The coupling of the pressure equation with the momentum equations res in 
a very stable and robust numerical scheme. The pressure Poisson equation, ich 
is elliptic in space, introduces into the system of the governing equations dissipative 
terms which are independent of the Reynolds raumber second-order spatial 

of the pressure). Thus, stable computations are rformed over a wide 
eynolds numbers without adding any explicit arti ial dissipation to the 

system of the governing equations, even though central d~f~ere~ci~g is used for the 
spatial discretization of the convective terms. However, the computed velocity 
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profiles showed a slight waviness in the inviscid core of the cavity, at high Reynolds 
numbers. This point is further discussed in the results section. All the computed 
results are obtained using a non-staggered clustered grid. The convergence histories 
as well as the results for the pressure, the vorticity and the velocity are presented 
and compared with other numerical results at Re = 100, 400, and 1000. 

MATHEMATICAL FORMULATION 

The continuity and momentum equations for incompressible, laminar fluid flow 
are written in Cartesian coordinates. Although the analysis is performed for two- 
dimensional flow, it is applicable for three dimensions: 

Continuity Equation 

@+d”_o 
ax ay 

x-momentum Equation 

au au au 

y-momentum Equation 

(1) 

(2) 

(3) 

In the above equations the dependent variables P, U, v are the static pressure 
divided by the density, velocity component in x-direction, and velocity component 
in y-direction, respectively. Re is the Reynolds number. 

The governing equations (l)-(3) are solved using the primitive variable formula- 
tion on non-staggered grids. The momentum equations (2) and (3) are solved for 
the velocity components u and v by marching in time. The pressure is computed 
from a Poisson-type equation derived from the divergence of the momentum 
equation. 

Pressure Poisson Equation 

By differentiating Eq. (2), w.r.t. x and Eq. (3) w.r.t. y and adding them, we obtain 

where 

(da) 
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and 

Equation (4) is a second-order elliptic partial differential equation for the 
pressure. It is used instead of the continuity equation in the system (I)-(3 ): To 
enforce the continuity equation (l), the unsteady term &I the pressure equation (4) 
is approximated as the unsteady terms of the momentum equations and O(l i Al) 
is set equal to zero. This point will be further discussed in the numerical solution 
section. 

Boundmy Conditions for the Pressure Equation 

Neumann and Dirchlet boundary conditions for t e pressure can be obtained by 
using the normal-and tangential-momentum equa s at the boundaries [I B ]. The 
Dirichlet boundary conditions, however, require additional step of ~~te~rat~~~ 
the tangential momentum equation along the boundary contour of the solution 
domain. It is also shown in Ref. [12] that the iterative solutions of the governing 
equations (2)-(4) with Neumann boundary conditions, for the pressure equation, 
converge faster than the Dirichlet case. Thus, the Neumann boundary ~o~dit~o~s 
are used here. 

oundary Conditions 

At an x = constant boundary, 

At a y = constant boundary, 

Solutions for the pressure Poisson equation (4) with Neumann boun 
tions (5) exist only if a compatibility condition is satisfied. 

~O~~Qti~il~ty Condition 

This condition is derived from Green’s theorem or by direct integration of Eq. (4) 
over the solution domain 
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where n is the outward unit vector normal to the boundary contour S which 
encloses the solution domain. 

Failure to satisfy Eq. (6) results in non-convergent iterative solutions for Eq. (4) 
[13], because a solution does not exist. The compatibility condition (6) is 
automatically satisfied on staggered grids; however, this is not the case for non- 
staggered grids. The consistent finite-difference method developed by Abdallah [8], 
which ensures the satisfaction of the compatibility condition on non-staggered 
grids, is used for the solution of Eq. (4). The method consists of the following three 
steps: 

(1) Write the Poisson equation in a conservative form. 

(2) Write the viscous terms in the momentum equations in terms of the 
vorticity. 

(3) Use consistent finite-difference approximation for the pressure equation 
and the Neumann boundary conditions. 

For more details about the method, the reader is referred to Ref. [S, 91. 

Solution Procedure 

The governing equations have been solved, so far, with the pressure equation 
uncoupled from the momentum equations because the momentum equations are 
parabolic in time and the pressure equation is elliptic in space. In Ref. [9, 141 the 
momentum equations are solved by explicit time marching techniques. In Ref. [lo] 
the momentum equations are coupled and solved implicitly using the approximate 
factorization technique of Beam and Warming. In both methods, the pressure 
Poisson equation is solved at each time step by the successive over-relaxation 
approach. Therefore, in both methods, the pressure is evaluated at the old time 
level and consequently the pressure derivatives are moved to the right-hand side of 
the momentum equations (2) and (3). 

Present Method 

In the present study, a fully implicit technique is developed for the solution of the 
momentum equations coupled with the pressure Poisson equation. The main dif- 
ficulty in coupling Eq. (2)-(4) is the absence of a time derivative term from the 
pressure equation (4). In order to overcome this difficulty, an alternative procedure 
for solving elliptic-type equations by time dependent solvers is considered. The 
addition of a first-order time derivative term for the pressure to Eq. (4) makes it a 
diffusion-like parabolic equation in time, 

where /? is a positive constant to accelerate convergence. 
Although, the pressure equation (7) is different from Eq. (4) it has the same 
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steady state solution. It is important to mention here that the transient solutions of 
Eq. (7) are not physically meaningful. 

The governing equations (2) (3), and (7) are coupled as 

r~+~+%qE,.)+$(Fgj+ at ax ay ax 

where 

r= diag(1, 1, j3) 

Q = (u, 0, P)’ 

E = (22 + P, uv, O)T 

F= (uv, v2 + P, O)T 

i au I au ap 

i au i au ap --,--,-+u!?+v!k 
T 

Reay Reay ay ax ay 
(8f) 

The superscript T refers to the transpose of the vector. 

Governing Equations in General Curvilinear Coordinates 

In order to accommodate arbitrary geometries, the Cartesian coordinates are 
transformed using the following independent variables: 

BJsing the general transformation by Vivian [ 151 and Vinokur 1161, the gov~r~~~~ 
equations (2), (3), and (7) are written in curvilinear coor mates, in strong comer.- 
vation law form as 
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where E and F are redefined: 

E=f (uU+ [,P, vu+ 5,P, o)T, Pb) 

F=-$(uV+ y,P, uV+ yYP, O)T, (9c) 

In the above equations U and I/ are the contravariant components of the velocity, 
defined as 

U=u[, +vty 

v= uy, + vyy 

(loa) 

(lob) 

and g” (i, j= 1, 2) is the contravariant metric tensor defined as 

g” = vgi vtj, 51 = 652 = ‘I. 

The dilation term D in curvilinear coordinates takes the form: 

(1Oc) 

D=-&(;)+;(T). Clod) 

Boundary Conditions in General Curvilinear Coordinates 

The Neumann boundary conditions for the pressure, Eq. (5a) and (5b), are 
written in general curvilinear coordinates as: 

At a g = constant boundary, 

( 11 ap 

- g r+g 
12 ap - 

avl > ( 
=u 4,$+5,$ +v c,g+cyg +g$. 

> ( > 
(lla) 
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At an y = constant boundary, 

where 

(1142) 

The implicit approximate factorization method of Beam and Warming [I 1 is 
used to solve the coupled system (9). Using Euler impkit time discretization, 
Eq. (8) is written at the time level t + Al = (n + 1) as 

jrAQ+At~(E-E,,-Ec2y 

+At~(F-Fo~-F,.2)~‘+‘=AtHn+‘, (12) 

where 

AQ zz Q”+ i - Q”. (I2a) 

The vectors E, E,, , F, FG2, and H are linearized in time using Taylor’s expansion, 
while E,, and F,, are evaluated explicitly in time, because they contain cross- 
derivative terms [ 11, 

En+ l(Q) = E”(Q) + A” AQ (12bj 
a 

-G+l(Q, Qe) = Etl(Q, Q<) + R” AQ + S” $ AQ (12c) 

EL+ ‘(Q> Q,) = -&(Q, Q,, + AE:,’ (12d) 

F”+l(Q)=F’z(Q)+B”AQ (De) 

F:: ‘(Q, Q,, = F:,(Q, Q,, + AF:, 1 (%2f) 

G+ ‘(Q, (2,) = OX?, Q,, + M” A (~28) 

where A, I?, ,§, B, M3 and N are the Jacobian matrices 

aE aE,, aE,, aF aFvZ a4;,, -- --__- 
aQ' aQ ' aQ&YQ aQ ' dQ,' 

respectively. 
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The Jacobian matrices in general curvilinear coordinates are given by 

A andB=L 
2k,u+k,v kYU kx 

J kxv k,u+2k,v 4 
0 0 0 

h (k:+k;) 0 0 

SandN=l J 0 &k;+k; 0 

I , (13a) 

1 , (13b) 

1 > (13c) 

L 
k(uk + vk,) k,(uk + ok,) (k:+k;)l 

where k = 4 for A, R, and S Jocabians and k = v] for B, M, and N, respectively. The 
underlined coefficients in (13b) and (13~) are the contribution of the pressure equa- 
tion to the system of the governing equations. It can be seen from Eq. (13~) that 
the viscous Jacobian matrices, S and N (i.e., the coefficients of the second order 
spatial derivatives), have one eigenvalue which is independent of the Reynolds 
number. This eigenvalue results from the coupling of the pressure equation with the 
momentum equations. Thus, the dissipative terms in the coupled system of the 
governing equations (9) do not go to zero as the Reynolds number increases. This 
feature of the present formulation results in stable and robust computations over a 
wide range of Reynolds numbers. No explicit artificial dissipation is added to the 
system of the governing equations for stability, although central differencing is used 
for the spatial discretization of the convective terms. 

The term dD/at in the right-hand side of Eq. (9) is approximated in time with the 
same order of accuracy as Q, 

aD D”+l -D” 

at At (14) 

In order to satisfy the continuity equation (l), the term Dnfl is set equal to zero 
in Eq. (14). As suggested by Harlow and Welch [7], D” is retained in Eq. (14) in 
order to cure the instability arising from the differencing of the unsteady term 
aqat. Thus 

aD D” 
at At’ (14a) 
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Using the above equations, Eq. (12) can be written as 

where 

A( )“-l=( )“-( )+I. (1%) 

Applying the approximate factorization method of ef. [I] to Eq. (Is), we 
obtain 

= - AtJ RHS”. Ba6) 

Equation (16) is solved in two steps; each one involves the inversion of a block 
tridiagonal matrix, as follows: 

and 

Finite-difference approximations for Eq. (16a) and (16 ) are obtained using 
central second-order accurate formulas for both first- and s ond-order derivatives. 
With reference to Fig. 1, the first- and second-order derivatives are ap 

~(“AQ)=“Bdp)i,j+*-i’AQ),i~,I:ZA? (17a) 

$(NtAQ)=CN;.(AQi,,+l -AQi,j)-Ns(AQ;,i -A i,j - l)llAY2, (17bj 

where subscripts IZ and s refer to grid locations k, j+ 4 and i, j- 4, respectiveiy. 
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u = -1. 

////////f//////Y /--E 

FIG. 1. Cavity geometry and finite-difference grid. 

Similar expressions for the rest of the derivatives are obtained using the same 
method. The metric coefficients and the Jacobian of the geometric transformation 
are computed at the grid points (i, j) as well as the e, W, IZ, and s locations (Fig. 1). 
A simple averaging procedure is used to compute the velocity components at these 
locations using the computed dependent variables at the grid points (i, j). 

Boundary Conditions and the Compatibility Constraint 

Two levels of boundary conditions are required at the time levels (*) and (n + 1) 
because of the factorization procedure used in Eq. (16). Boundary conditions for 
the velocity components are obtained from the no-flux and no-slip conditions at the 
solid boundaries, thus Au = Au = Au* = Au” = 0. 

Care must be exercised in determining the proper boundary conditions for p, Ap, 
and Ap* in order to satisfy the compatibility condition of the pressure equation. 
Application of the Neumann boundary conditions explicitly seems to be the 
simplest way to implement the consistent finite-difference method of Ref. [S]. 
The Neumann boundary conditions are applied at one-half grid away from the 
boundary to compute P”. The computed pressure is then used at the time level 
y1 -t 1. Thus, AP” and AP* are both set equal to zero. In other words, the Dirichlet 
boundary condition for the residual vector AQ is employed. It is important to state 
here that the compatibility condition must be satisfied in the right-hand side of 
Eq. (16a) at each time level. This is ensured by updating the pressure boundary 
values from the Neumann conditions. 

Convergence Parameters 

In this section some aspects about the stability and the convergence charac- 
teristics of system (9) are discussed. The following discussion is not a rigorous 
stability analysis, since this is beyond the scope of the present paper, but just an 
effort to estimate the parameters affecting the convergence of the coupled system. 
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Consider the (t - 5) plane. By locally freezing the Jacobian matrices, the 
following equation is obtained: 

Where A, k, and 3 are T-IA, T-‘R, and T-‘S, respectively. The rig and 
side of Eq. (1%) consists of cross-derivative terms, which are evaluated explicitly in 
time, and q-derivative terms. 

When central finite difference approximations are used to discretize the spatial 
derivatives the following parameters, associated with the eigenvalues of t 
Jacobian matrices, should be involved in the choice of the optimum time increment 
At. 

Atg” 
B=j-p (19c) 

In order to avoid the computation of the local time steps in every iteration and save 
computational time, an expression involving only geometric quantities is used 
instead of Eq. (19a) and a CFL is defined as: 

The above expression, although it corresponds to a purely geometric variation of - 
df, has been found to be adequate [17]. In the present study, CFL and Re expres- 
sions are combined in one and a CFL is defined as 

where CFL is given by Eq. (19d) and Re,, is a eynolds number base 
local grid spacing, defined by 

Re 
Re At2 

A5 =T 
g 

Given CFL and B, Eq. (20) is used to compute the local value of At. Then the 
local value of /3 is computed using Eq. (19~). The same analysis is applied to the 
(t - y ) plane by replacing At by A? and g” by g22. 
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The parameters CFL and /I are optimized by numerical experimentation for 
Re = 100 (see results and discussion section). The use of a variable time increment 
at each grid point affects the derivation of the pressure Poisson equation from the 
divergence of the momentum equation. The altered form of the pressure Poisson 
equation is given in Appendix I. 

RESULTS AND DISCUSSION 

The driven cavity problem, which has been widely used for validating solution 
techniques for the incompressible Navier-Stokes equations, is selected to validate 
the present method. The method is tested at different Reynolds numbers, ranging 
between 100 and 1000. A stretched grid is used in order to better resolve high 
gradients near the solid boundaries. Furthermore, a geometric series was employed 
to cluster the grid near the boundaries. To preserve second-order accuracy in the 
physical domain the ratio of the series is chosen to be 1.1 [18]. 

Numerical results were obtained on several grids ranging from (11 x 11) to 
(51 x 51) grid points. All the results presented here are computed on (41 x 41) grid 
points for Re = 100 and 400 and (51 x 51) grid points for Re = 1000. 

The following definition was used to compute the total residual at each time step, 

j=l 

where N is the number of grid points and i = 1, 2, 3 for u, v, and p residuals, respec- 
tively. The logs of the si (i= 1, 2, 3) are plotted versus the number of time steps. 

Figure 2 present the convergence histories for u, v, and p at Reynolds numbers 
100, 400, and 1000, respectively. All computations were performed without using 
any artificial dissipation and starting from zero initial guess. The convergence rate 
was optimized by numerical experimentation only for Re = 100. The optimum set 
of parameters was found to be CFL = 10 and fl= 60. No effort was made to 

10 

1. 
0. 

-1. 
-2. 

-3. 

-4. 

-5. 

-6. 

-7. 
0 23l 4Y.J 6W 8W 100 

NUMBER OF TIME STEPS 

FIG. 2. Convergence histories. 
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PRESENTRESULTS RESULTS OFREFERENCE(i9) 

FIG. 3. Pressure coefficient contours at Re = IO0 

-60. 

PRESENTRESULTS RESULTS OFREFERENCE llOI 

FIG. 4. Pressure coeficient contours at Re=400. 

150 

8 

PRESENT RESULTS RESULTS OF REFERENCE 110) 

FIG. 5. Pressure coefficient contours at Re = 1000. 
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optimize the convergence at Re =400 and 1000. For Re =400 the same set of 
parameters as at Re = 100 was used. At Re = 1000 the CFL was reduced to 2, 
because of the severe initial guess, and the same /I was employed. 

Figure 2 shows linear variations of log(s,) with the number of time steps and 
demonstrates the excellent convergence characteristics of the coupled system. It can 
be seen from the figures that after the impulsive start dies out, the pressure residue 
drops at exactly the same rate as the velocity residues, for all the three cases con- 
sidered. One can also observe that the oscillations of the pressure residue increase 
with the Reynolds number. However, the oscillations die out after the solution 
passes the transient stage and thereafter the three residues decrease at the same rate. 

The computed static pressure coefficients at Reynolds numbers 100, 400, and 
1000, are presented in Figs. 3, 4, and 5, respectively. The static pressure coefficient 
is defined as 

C, = 2 Re(P- P,)/U”, 

where P, is the reference pressure at the center of the cavity’s lower wall and U is 
the reference velocity. The present results are in excellent agreement with the results 
of Ref. [19] (for Re = 100) and Reference [lo] (for Re = 400 and 1000). In 
Ref. [ 191 the pressure was computed by direct integration of the momentum equa- 
tions, while in Ref. [lo] the artificial compressibility method was employed. It can 
be seen from Fig. 4 and 5 that the artificial compressibility method predicts slightly 
oscillatory pressure contours near the two upper singular corners. It is stated in 
Ref. [lo] that artificial dissipation is required by the artificial compressibility 
method in order to obtain reliable pressure contours even at Re = 100. However, 
this is not the case for the present fully implicit technique, where all the results are 
obtained without artificial dissipation. 

The vorticity contours, which are computed from the velocity field, are shown in 
Figs. 6, 7, and 8 at Re = 100, 400, and 1000, respectively. The present results com- 
pare very well with the results of Ref. [19] (for Re = 100) and Ref. [20] (at 

PRESENTRESULTS RESULTS OF REFERENCE (19) 

FIG. 6. Vorticity contours at Re = 100. 
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Re = 400 and 1000). In both references, the vorticity stream function formulation is 
used to solve the governing equation. The results of Ref. [19] are obtained on a 
(41 x 41) uniform grid, while in Ref. [20] the results are obtained by using a fourth- 
order accurate method on a (180 x 180) uniform grid. In the present results, one 
notices slight oscillatory vorticity contours in the inviscid core of the cavity, at 
Re = 400 and 1000. To investigate this behavior, one should examine the velocity 
profiles in that region, since the vorticity is not a primitive variable. Indeed there 
is very slight waviness in the velocity profiles in the inviscid core of the cavity. That 
waviness in the velocity is exaggerated in the vorticity, because the vorticity 
involves derivatives of the velocity field. The cause of the slight waviness is due to 
the oddeven decoupling which occurs locally in the inviscid core of the cavity 
where the viscous terms are very small and the velocity profile is amost linear. 

To eliminate the waviness in the velocity field and to study the accuracy of the 
present method, the computations were repeated by adding fourth-order explicit 
artificial dissipation [ 181, only, to the momentum equations. The pressure equation 
does not require any artificial derivatives (dissipative terms). The computed vor- 
ticity contours are presented in Fig. 9 and are shown to be smooth everywhere. The 
velocity profiles computed with artificial dissipation are almost identical with the 
profiles computed without dissipation. However, the velocity profiles computed 
without dissipation are, indeed, slightly wavy in the inviscid core of the cavity, but 
this waviness can be seen only if the profiles are plotted in an exaggerated scale. 
This is presented in Fig. 10, where the linear part of the u-velocity profile at x = 0.3 
is plotted in a very large scale, at Re = 400. 

FIG. 10. Detail of the u-velocity profile at x = 0.3, plotted in a very large scale (Re = 400): * = results 
without dissipation; - = results with dissipation. 
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FIG. Ii. u-velocity profiles at the center-line of the cavity: Re = 400; Re = 3000: - = present resui!s; 

0 = results of Ref. [lo]. 

The computed velocity profiles, without artificial dissipation, plot 
vertical centerline of the cavity are in excellent agreement with 

ef. [IO] (Fig. 11). 

CONCLUSIONS 

A fully implicit procedure is developed for the solution of the steady incom- 
pressible Navier-Stokes equations in primitive variables. The time 
momentum equations are coupled with a Poisson equ 
solved using the approximate factorization method of 

pro sed formulation of the pressure Poisson approach does not requi 
iter ve solution of the pressure equation at each time step 
back of the classical pressure Poisson solvers is eliminat 
pressure equation with the momentum equations results in 
system with excellent convergence characteristics. 

APPENDIX 

lin this Appendix, the pressure Poisson equation is derived from the momentum 
equations for a variable time increment. Discretizing in time the Cartesian form of 
the momentum equations, one obtains 

u n+l zu”-,,jt 

where the viscous terms are expressed in terms of the vorticity and CT’, CT~ are the 
convective terms in x and y directions, respectively. 
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Differentiating Eq. (1.1) w.r.t. x and Eq. (1.2) w.r.t. y and adding them together, 
one obtains 

Reay)~+1+~[At(~+~2-~~)~+1=D’., (1.3) 

where Dn+ ’ has been set equal to zero for reasons which have already been 
discussed. 

Equation (1.3) is identical with the pressure equation (4) at steady state. This is 
shown by expanding Eq. (1.3) as follows: 

(1.4) 

The last two brackets in Eq. (1.4) are identically zero, since they are the steady 
x- and y-momentum equations, respectively. Also the viscous terms can be 
eliminated from the remaining equation using the continuity equation and thus the 
pressure equation (4) is recovered. In general, curvilinear coordinates equation (1.3) 
is written as 

)I = D”, (1.5) 

where cr’, o’, and D are the convective terms and the dilation in curvilinear coor- 
dinates. 

The viscous terms, appearing in (1.5), are included in the cross derivative flux 
vectors E,, and F,, and, consequently, they are evaluated explicitly in time. 

The Jacobian matrices of the resulting system have exactly the same form as the 
one given in the numerical solution section, except that the third row of the 
Jacobians R, N, S, and M has to be multiplied by At. 

It is important to stress here that the Neumann boundary conditions for the 
pressure, given by Eq. (lla) and (Ilb), are absolutely consistent with Eq. (1.5). 
Therefore, they can be used as boundary conditions for Eq. (1.5) witnout any 
modifications. 

APPENDIX: NOMENCLATURE 

A, B Jacobian matrices aE/aQ and aF/aQ, respectively 
CFL Courant-Friedrichs-Lewy number 
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Pressure coefficient 
nation 

5 and y directional inviscid flux vectors, respectively 
[ and y directional cross viscous flux vectors, respectively 
Contravariant metric tensor 
Source term 
Jacobian of the geometric transformation 
Jacobian matrices C3E,,/iYQ and dF,,fd@ respectively 

ependent variables vector 
acobian matrices dE,,/aQ, and I~P,,/~Q,, respectively 

time 
5 and q contraviariant velocity components, respectively 
x and y Cartesian velocity components, respectively 
Cartesian coordinates 
Positive preconditioning parameter 

reconditioning matrix 
ye, and t increments, respectively 

esidual vector for u, u, and p, respectively 
Curvilinear coordinates 
Convection terms in (- and y-directions, respectively 
vorticity 

Refer to east, west, north, and south of the grid point (i, j): res 
tively 

point indices 
to partial derivatives with respect to x and y, respectively 

fer to partial derivatives with respect to t an 
Refers to viscous flux vectors 

Refers to time step t 
efers to transpose 

Refers to time level. 
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